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Abstract. Competition has been introduced in the electricity markets with the goal of reducing prices
and improving efficiency. The basic idea which stays behind this choice is that, in competitive markets, a
greater quantity of the good is exchanged at a lower price, leading to higher market efficiency. Electricity
markets are pretty different from other commodities mainly due to the physical constraints related to
the network structure that may impact the market performance. The network structure of the system on
which the economic transactions need to be undertaken poses strict physical and operational constraints.
Strategic interactions among producers that game the market with the objective of maximizing their
producer surplus must be taken into account when modeling competitive electricity markets. The physical
constraints, specific of the electricity markets, provide additional opportunity of gaming to the market
players. Game theory provides a tool to model such a context. This paper discussed the application of
game theory to physical constrained electricity markets with the goal of providing tools for assessing the
market performance and pinpointing the critical network constraints that may impact the market efficiency.
The basic models of game theory specifically designed to represent the electricity markets will be presented.
IEEE30 bus test system of the constrained electricity market will be discussed to show the network impacts
on the market performances in presence of strategic bidding behavior of the producers.

PACS. 89.75.-k Complex systems – 89.30.-g Energy resources – 89.65.Gh Economics; econophysics,
financial markets, business and management

1 Introduction

Nowadays the liberalization of the power industry has
been implemented in many countries. The introduction of
the deregulation has not always proved to be as efficient
as expected. In California [1,2], the market experienced
huge problems. From May 2000 to May 2001, the price
hit frequently the cap and forced the regulator to revise
the price cap downward. The average price of December
2000 was 317 $/MWh, almost ten times higher than usual.
In June 1998, wholesale electricity price in Midwest US
market reached 7000 $/MWh [3]. Starting from the reg-
ulated monopoly, the competition in the electricity mar-
kets was aimed to improve market efficiency toward the
theoretical reference model of perfect competition. Actu-
ally, due to the structural characteristics, the electricity
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markets are oligopoly in which the market performances
are in-between perfect competition and monopoly. In this
context, the task of the regulators is to force them to-
ward perfect competition while monitoring continuously
the distance from such a condition, or to avoid market
power exploitation.

In the electricity markets, as well as in other markets,
market power may arise striving for larger amount of prof-
its or surpluses with high prices and capacity withdrawals,
compared with the competitive values [4]. Game the-
ory [5,6] can capture the strategic interactions among pro-
ducers who are aware that their results depend on other
competitors’ decisions. Based on the game theory, [10–22]
investigated the strategic interactions among producers in
electricity markets.

In addition to the traditional causes of market power,
in the electricity markets, the network constraints may
give additional possibilities of market power behaviors
arising that are very specific of this contest. An instan-
taneous balance between power injected by the genera-
tors and the power withdrawn by loads plus the trans-
mission losses should be guaranteed to keep the system
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Fig. 1. the market clearing without (left) and with (right)
network constraints.

frequency at the rated value. The Kirchhoff laws must be
satisfied and a power balance at each bus must be en-
forced. The power flow paths, directions and values, are
depended on the bus voltage profile and primary constants
of the transmission lines and those lines have flow limits
including thermal, voltage drop and stability limits. In
addition, from the operational point of view, the voltage
profile of the system must be kept within a specific in-
terval. Therefore, the power systems that accommodate
the economic transactions in the market need to be oper-
ated under strict physical and operational constraints to
assure its feasibility; if these constraints are binding the
system is said to be congested and proper measures need
to be undertaken [7]. This paper is aimed to discuss the
network constraints impacts on the market performances
under oligopoly models.

This paper consists of four additional sections. In Sec-
tion 2, the market clearing model under network con-
straints is introduced. Section 3 discusses different game
models while in Section 4 the numerical studies with
respect to IEEE30 bus system is presented. Section 5
provides some conclusive remarks.

2 Market clearing model

In the pool operated electricity markets, the Independent
System Operator (ISO) takes the responsibility of coor-
dinating the aggregate offers from the supply side and
the aggregate demand curves for a specified time inter-
val trading, usually one hour. That leads to the determi-
nation of market equilibrium, characterized by a unique
market clearing price (λ) and a market clearing quan-
tity (q) (Fig. 1 left). The social surplus is composed by
the consumer surplus (SC) and producer surplus (SG).
However, due to the peculiarities of the electricity trans-
mission, the transactions must be settled according to the
physical constraints of the electricity network and differ-
ent nodal prices may arise when the flow limits are binding
(λ′′ and λ′ are respectively for the demand side and supply
side, Fig. 1 right). In this case, merchandise surplus (SM )
will arise, the area λ′′EAλ′ (Fig. 1 right). The social sur-
plus is equal to the summation of the consumer surplus,
merchandise surplus and producer surplus.

A producer that is unable to exercise market power is
known as price taker. According to the classic economic

theory, a price-taking producer that wishes to maximize
his profits would bid his power production at his own
marginal cost and the market is characterized as perfect
competition [8,9].

In perfect competition markets a large number of price-
taking producers with a very small market share pro-
duce homogeneous and perfectly substitutable commodi-
ties. Furthermore the market should not have significant
entry barriers but have free mobility of all the related pro-
duction resources and perfect information among produc-
ers. Although the perfect competition is completely unre-
alistic, it can serve as a reference case to identify market
power behaviors in a practical market, basing on the fact
of that perfect competition would lead to the most efficient
market performance.

Network constraints distinguish the electricity mar-
kets from most of other commodity markets. Considering
the network constraints, the perfect competition market
equilibrium can be interpreted as an optimization prob-
lem. Let’s assume that at each generator bus there is just
one producer (generator), the cost function of the pro-
ducer g is:

Cg(pg) = am
g pg + 1/2 bm

g p2
g ∀g ∈ G (1)

and the marginal cost of the producer gis:

cg(pg) = am
g + bm

g pg ∀g ∈ G (2)

where am
g and bm

g are respectively the intercept($/MW)
and slope($/MW2) of the marginal cost function; pg is
the production quantity (MW); G is the set of generator
buses.

At the load bus d,the electricity consumer d is modeled
with a linear demand function:

vd = ed + hd qd ∀d ∈ D (3)

where ed and hd are respectively the intercept ($/MW)
and slope (negative, $/MW2) of the demand function; qd

is the demand quantity of the load d (MW); D is the set
of load buses.

The market clearing based on the linear DC power flow
can be formulated as:

max SS = 1/2 qT H q + qT e − (1/2 pT Bmp + pT am)
(4)

s.t. IT
G p − IT

Dq = 0 ↔ vN (5)

− T ≤ J(p − q) ≤ T ↔ µ+/µ− (6)

P min ≤ p ≤ P max ↔ ω+/ω− (7)

where:

p: power production vector;
q: power demand vector;
e, h: intercept and slope parameter vectors for linear de-
mand curves;
am, bm: intercept and slope parameter vectors for linear
marginal costs;
H, Bm: diagonal matrix (diagonal elements: the vector h
or bm, respectively);
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P min, P max: vectors of lower, upper capacity (MW) for
the generators;
J : power transfer distribution matrix ;
T : the flow limits (MW) vector;
IG , ID: identity vector (same dimension as the power or
demand vector).

The superscript “T ” is used to denote the transpose op-
eration for the matrices or vectors.

The equality expression (5) is for the power balance,
the associated Lagrange multiplier νN is the nodal price at
the reference bus N . The inequality expressions (6) and (7)
represent the line flow limits and the power generation
lower and upper limits; µ+/µ− and ω+/ω− are the asso-
ciated Lagrange multiplier vectors for the line flow limits
and for the generation limits.

The nodal prices (λ) at the buses other than the refer-
ence bus N can be expressed as linear functions in terms
of the vN and µ+/µ−:

λ = f
(
vN (p, q) , µ+, µ−)

. (8)

When the line flow are not binding, µ+ = µ− = 0

λ = vN (p, q) (9)

all the nodal prices are equal to the reference bus price.
The power production p and the load demanded q are:

p = (Bm)−1 [
λG − (

ω+ − ω−) − am
]

(10)

q = H−1 (λD − e) . (11)

When the production are not binding at the capacity lim-
its (ω+ = ω− = 0), the nodal prices of the generators are
at their supply curves (marginal cost curves under per-
fect competition). As for the loads, the nodal prices are
at the demand curves. Provided with the nodal prices and
the power quantities, the producer surplus (SG

g ) and the
consumer surplus (SC

g ) can be expressed as:

SG
g = λgpg − (am

g pg + 1/2 bm
g p2

g) ∀g ∈ G (12)

SC
d = ed qd + 1/2 hdq

2
d − λdqd ∀d ∈ D. (13)

However, the perfect competition is just an ideal mar-
ket that serves as reference case. The electricity market is
closer to the oligopoly model in which the producers may
exert market power behaviours in presence of strategic
biddings to maximize their producer surpluses. Modelling
the oligopoly market clearing is done by substituting the
marginal cost curves in the objective function of the per-
fect competition model (4) with the strategic biddings of
the producers and the object function value is called sys-
tem surplus.

3 Oligopoly competition models: game theory
applications

Game theory was founded in 1944 by Von Neumann and
Morgenstern. The papers written by Nash in 1951 on the

definition and existence of Equilibrium are the basis for
modern non cooperative game theory. In the last 50 years
game theory has become a crucial tool for the analysis of
strategic behaviors of individuals and competition among
companies in oligopoly markets. For electricity markets,
basic game “ingredients” are:

– Game: is a set of rules that discipline the interactions
among competitors;

– Payoff : for producer g is the producer surplus SG
g ;

– Strategy: for producer g is the way he chooses the of-
fers that may bring the maximal payoff in the market
clearing;

– Move: for producer g is the solution of the payoff
maximization problem taking into account the market
clearing with the strategies of other producers fixed;

– Nash Equilibrium: a situation in which no producer
can improve his surplus by changing his strategy while
the strategies of other producers are fixed.

Let sg be the strategy of producer g, Gg be the set of the
producers except g (g ∪ Gg = G), sGg = {si, ∀i ∈ Gg}: the
strategy set of the competitors,

∏
g(sg, sGg) the payoff of

g given the decisions of the competitors. Then, {s∗g, ∀g}
is Nash Equilibrium if:

∏

g

(
s∗g, s

∗
Gg

) ≥
∏

g

(
sg, s

∗
Gg

) ∀g ∈ G. (14)

In general, equilibrium can be attained by multi
moves(iteration search algorithm, [4,10,14]) of the game
model in which each producer solves his surplus maximiza-
tion problem alternatively until no producer can improve
his/her surplus by changing his strategy, given that the
strategies of other producers are fixed.

3.1 Supply function equilibrium (SFE) [4,10–13]

In the SFE game models, each producer will find a lin-
ear optimal supply function to submit to the market to
maximize the individual producer surplus. According to
the parameterization techniques for the decision variables,
three kinds of supply function models are used popularly
in literature, which are listed as follows:

– SFE-intercept : the decision variable is ag while the bg

is fixed as bm
g (sg = ag).

The supply function can be expressed as:

og(pg) = ag + bm
g pg ∀g ∈ G; (15)

– SFE -slope: the decision variable is bg while the ag is
fixed as am

g (sg = bg).
The supply function can be expressed as:

og(pg) = am
g + bgpg ∀g ∈ G; (16)

– SFE -k parameter: the decision variable is kg and
servers as a multiplier of the marginal cost (sg = kg).
The supply function can be expressed as:

og(pg) = kg(am
g + bm

g pg) ∀g ∈ G. (17)
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Suppose the strategic supply functions take the intercept
parameterization model. By applying the KKT conditions
to the optimization problem (4) ∼ (7), we can get the price
of the reference bus N as:

vN =
IT
G (Bm)−1

[
JT

G (µ+ − µ−) + (ω+ − ω−) + a
]

IT
G (Bm)−1IG − IT

DH−1ID

− IT
DH−1

[
JT

D(µ+ − µ−) + e
]

IT
G (Bm)−1IG − IT

DH−1ID
. (18)

The nodal prices at the generator and load buses are:

λG = vNIG − JT
G

(
µ+ − µ−)

(19)

λD = vNID − JT
D

(
µ+ − µ−)

. (20)

The subscript of the J matrix is to denote the correspond-
ing rows of the J matrix (reduced J matrix). For example,
JG and JD denote the rows of the J matrix corresponding
to the generator buses and load buses, respectively.

The power production and the load demanded quanti-
ties are:

p = (Bm)−1 [
vNIG − JT

G
(
µ+ − µ−) − (

ω+ − ω−) − a
]

(21)

q = H−1
[
vNID − JT

D
(
µ+ − µ−) − e

]
. (22)

With the nodal price and quantity, the maximization of
the producer surplus can be formulated as:

max SG
g ∀g ∈ G (23)

− T ≤ J (p − q) ≤ T (24)

P min ≤ p ≤ P max (25)
〈
µ+, J(p − q) − T

〉
= 0 (26)

〈
µ−, J (p − q) + T

〉
= 0 (27)

〈
ω+, p − P max

〉
= 0 (28)

〈
ω−,−p + P min

〉
= 0 (29)

µ ≥ 0, ω ≥ 0; (30)

where the symbol “〈〉” denotes the element by element
production of the two related vectors.

3.2 Quantity bidding equilibrium

This kind of game models includes the Cournot [14–18]
and Stackelberg models [19,20]. The producers will find
the optimal quantity to submit to the market.

Stackelberg model considers leader producers who own
large shares of the system capacity and are able to influ-
ence the market prices while the followers do not but can
observe the quantity chosen by the leaders and select their
optimal biddings. This model can be defined by a back-
ward induction in which the leader producer would offer
his quantities first and the followers take that as given.
The response of the followers can be anticipated by the

leaders and on that basis the leaders would decide the
quantity offered.

In this paper, we discuss the Cournot model.
The Cournot model is used to analyze oligopoly mar-

kets in which the number of firms is small, or the marginal
cost curve is ‘steep’ with respect to the demand and the
size of the firms are relative similar. The decision vari-
able is the quantity offered by each producer (sg = pg).
For the maximization problem of producer g, the power
quantities offered by other producers are assumed as given
values. The nodal price at the generator bus g is:

λg = vN − JT
g (µ+ − µ−) ∀g ∈ G (31)

and vN =

pg +
∑

i∈Gg

P ′
i + IT

DH−1
[
JT

D(µ+ − µ−) + e
]

IT
DH−1ID

(32)

where the P ′
i (∀i ∈ Gg) is the biding quantity of the com-

petitors that are considered as given values derived from
the last moves of corresponding producers.

The optimization problem can be expressed as:

max SG
g ∀g ∈ G (33)

− T ≤ J(p − q) ≤ T (34)

Pmin
g ≤ pg ≤ Pmax

g (35)
〈
µ+, J(p − q) − T

〉
= 0 (36)

〈
µ−, J(p − q) + T

〉
= 0. (37)

3.3 Price bidding equilibrium

This kind of game models includes the Bertrand [21] and
Forchheimer [22]. The two models respectively correspond
to the Cournot and Stackelberg models; the only difference
is that in the former two models the producers compete
for the price while in the latter two the producers com-
pete for the quantity. As we discussed before, under no
network constraints, market clearing price is determined
by the aggregate demands. Thus, since the producer will
not accept negative surpluses, the price bids game among
the producers will compel the producer’s bid down to the
marginal cost otherwise it will be substituted by other
competitors who can provide lower prices, given the con-
dition of the unlimited capacities of the producers (That
is supported by the assumption that any firm can capture
the entire market by pricing below others and can expand
output to meet such demand [9]). If we consider the net-
work constraints and the capacity limits, the price bidding
game models are impossible to be formulated in a math-
ematical way since prices are actually the byproducts of
the market clearing, (8), and can not be determined by
the producers ex ante.

Therefore, at least for the short-term such as the
hourly dispatch game with the consideration of the net-
work constraints, the price bidding models are not suit-
able for the electricity markets from the analytical point
of view.
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4 Numerical studies

As a matter of fact, the solution of the Nash equilibrium
in terms of the producers’ strategy is not easy due to the
fact of that the sub-problem of the maximization producer
surplus is a nonlinear optimization problem.

First, for the Cournot model, since the production
of other players are fixed values, the optimization prob-
lem of the considered player is solved by sweeping all
the possible states of the lines (3 lines, 33 = 27 states),
which makes the non-linear constraints, the complimen-
tary equality constraints of the line flow limits (expres-
sions (36) and (37)), transformed into linear constraints
due to the fact of that the line flow states are pre-specified.
The complimentary term means that, for each line l, ei-
ther the Lagrange multipliers µ+

l and µ−
l are equal to zero

with the line flow not binding or the µ+
l (µ−

l = 0) is a pos-
itive value with the line flow binding at its limit, positive
direction, or the µ−

l (µ+
l = 0) is a positive value with the

line flow binding at its limit, negative direction.
Second, for the SFE -intercept model, the sweeping of

the line flow states is not efficient since the production of
other players are not determined (only the supply func-
tions of the competitors are assumed as fixed in the move
of the considered player). The complementary equality
constraints in terms of the production limits (6 players,
the production may be binding at the upper limit or lower
limit or not binding, expressions (28) and (29)) and lines
flows limits make the possible states of the model solution
equal to 36 × 33, which is a too large number to be solved
by sweeping all the state space. In this respect, for the
move of the considered player, we first find a good start
point by using the heuristic optimization approach and
from that start point we use the analytical approach to
find the local optima around that point.

Since the nodal prices may be different when the line
flows are binding, the weighted average price is introduced
to represent the market clearing price. The market clear-
ing price under constrained network can be expressed as:

λ = (Σg pgλg + Σdqdλd)/(Σgpg + Σd qd). (38)

We want to point out the impacts of the physical network
constraints on the market performances under strategic
biddings of the producers through the market inefficiency
index, the Lerner index and the allocation of surpluses
among market participants.

Use the superscript E and P to denote the market re-
sults at the oligopoly equilibrium and perfect competition
equilibrium, respectively. Use the subscript u to denote
the market results under unconstrained network. For ex-
ample:

– SSE
u /SSP

u : social surplus at oligopoly equilib-
rium/perfect competition equilibrium, without
network constraints;

– SSE/λE : social surplus/market clearing price at
oligopoly equilibrium, with network constraints;

– λuE/λP
u : market clearing price at oligopoly equilib-

rium/perfect competition equilibrium, without net-
work constraints.

Fig. 2. The IEEE30-bus transmission network.

Table 1. The Considered Lines for the Constrained Network.

Flow limits
Lines l From bus To bus

Tl MW
7 4 6 5
25 10 20 5
33 24 25 5

Table 2. Parameters for the Producers.

Bus g am
g $/MW bm

g $/MW2 Pmin
g MW Pmax

g MW

1 25 0.15 5 80

2 20 0.25 5 60

13 23 0.2 5 60

22 22 0.25 5 60

23 20 0.2 5 80

27 22 0.15 5 70

The market inefficiency indices can be expressed as:

ξ = 100∗
(
SSE − SSP

u

)
/SSP

u (39)

ξu = 100∗
(
SSE

u − SSP
u

)
/SSP

u . (40)

The Lerner indices are:

σ = (λE − λP
u )/λE (41)

σu = (λE
u − λP

u )/λE
u . (42)

The IEEE30 bus test system is composed with 6 produc-
ers (at the 6 generator buses) and 20 consumers (at the
20 load buses), Figure 2. The lines selected to consider
the network constraints are shown in Table 1, other lines
are assumed to have infinitive line flow limits. The pa-
rameters of the generators and the load demand curves
are illustrated with the Tables 2 and 3.

Perfect competition and monopoly represent the two
extreme market structures, the market clearing results are
illustrated with Tables 4 and 5. While in other models we
assume that each generator is owned by one owner, in the
monopoly case, the six generators are assumed as owned
by one firm aiming at maximizing its total producer sur-
plus, deteriorating the market performance notably with
very high values of σ (0.94), σu (0.89), ξ (−21.4%) and
ξu (−20%).

A more common case is the oligopoly of which the
equilibrium is in-between the two preceding cases. The
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Table 3. Parameters for the Load Demand Curves.

ed fd ed fdBus d bus d
$/MW $/MW2 $/MW $/MW2

2 125 −5 17 100 −4.5
3 80 −4 18 80 −4
4 100 −4 19 100 −5
7 150 −5 20 100 −5
8 120 −4.5 21 75 −3.5
10 100 −4 23 70 −3
12 120 −5 24 80 −4.5
14 80 −3.5 26 80 −4
15 80 −3 29 75 −4
16 80 −4 30 100 −5

Table 4. The Market Equilibrium under Monopoly (Mono.)
and Perfect Competition (Perf.), Unconstrained network.

SS $ λ $/MW
∑

g Pg MW
∑

g SG
g $

∑
d SC

d $ SM $

Mono. 9120 59.8 158 5601 3519 0

Perf. 11351 31.6 295 1439 9912 0

Table 5. The Market Equilibrium under Monopoly (Mono.)
and Perfect Competition (Perf.), constrained network.

SS $ λ $/MW
∑

g Pg MW
∑

g SG
g $

∑
d SC

d $ SM $

Mono. 8924 61.3 152 5506 3321 97

Perf. 10990 32. 6 280 1465 9247 279

Table 6. The Market Equilibrium under Cournot (Cout.) and
SFE-intercept (SFE) Models, Unconstrained network.

SS $ λ $/MW
∑

g Pg MW
∑

g SG
g $

∑
d SC

d $ SM $

Cout. 11 173 39.4 258 3395 7778 0

SFE 11345 33 288 1835 9509 0

Table 7. The Market Equilibrium under Cournot (Cout.) and
SFE-intercept (SFE) Models, Constrained network.

SS $ λ $/MW
∑

g Pg MW
∑

g SG
g $

∑
d SC

d $ SM $

Cout. 10581 43.8 226 3928 6380 273

SFE 10618 38.5 246 2725 7416 477

Cournot and the SFE-intercept game models are selected
to show the oligopoly market performances under con-
strained and unconstrained network, the market clearing
results at the oligopoly equilibrium are shown in Tables 6
and 7. The Cournot model has higher values of the Lerner
index and higher values of the inefficiency index (abso-
lute value) than the SFE-intercept model does, both under
constrained and unconstrained network, Figures 3 and 4,
suggesting the Cournot model possesses higher noncom-
petitive level than the SFE -intercept does. On the other
hand, under the given model, with higher Lerner and in-
efficiency (absolute value) indices values, the constrained
network brings higher level of market power than the un-
constrained network does.

Fig. 3. The market inefficiency indices.

Fig. 4. The Lerner indices.

Fig. 5. The surplus of different producers under Cournot
model.

Figure 5 is the producer surplus for Cournot model.
The amount of extra surplus due to the network con-
straints (the total producer surplus under constrained
network minus the total producer surplus under uncon-
strained network, 3928 $−3395 $ = 533 $) goes to the pro-
ducer G13, G23 and G27, especially the producer G23 takes
the larger part. For SFE-intercept model, Figure 6, only
producer G1 gets fewer surpluses under constrained net-
work. Furthermore, Counot model contributes to higher
total producer surplus, and also higher individual pro-
ducer surplus, than SFE-intercept model does both un-
der constrained network, 3928 $ and 2725 $ respectively,
and under unconstrained network, 3395 $ and 1835 $
respectively.

Unfortunately, the favorable impacts of network con-
straints on the supply side are along with the adverse im-
pacts on the consumer side. The total consumer surplus is
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Fig. 6. The surplus of different producers under SFE-intercept
model.

Fig. 7. The consumer surplus under Cournot and SFE-
intercept models.

decreased from unconstrained network case to constrained
network case, Figure 7, the decrement levels are respec-
tively 14% and 18.2% under Cournot and SFE-intercept
game models.

Furthermore, under constrained network, although the
market inefficiency indices of Cournot model and SFE-
intercept model are almost the same, −6.8% and −6.4%
respectively, it cannot say the two models have the same
oligopoly level. Indeed, the main effects of the market
power behaviors from the supply side are more remark-
able under Cournot model with higher market clearing
price, 43.8 $/MW (38.5 $/MW under SFE - intercept
model), and lower exchanged power quantities, 226MW
(246MW under SFE -intercept model). The less total pro-
ducer surplus (

∑
g SG

g ) with the more total consumer sur-
plus (

∑
d SC

d ) and mechanize surplus (SM ) under SFE -
intercept game model than under Cournot model, Table 7,
results in the two models close values of the social surplus
(SS) and thus the close values of the inefficiency indices.

Another point is that, under constrained network,
the social surplus at the perfect competition equilibrium
(10 990 $, the last row of the Tab. 5) is even smaller than
the social surplus value at the Cournot equilibrium under
unconstrained network (11 173 $, the row 2 of Tab. 6).
Therefore, to strengthen the electricity network letting it
not to be congested is an imperative task that the mar-
ket regulator should monitor continually, from the market
efficiency point of view.

5 Conclusions

For the specific features of the electricity industry, the
present electricity markets may be better described in
terms of oligopoly than of perfect competition from which
they may be rather far. Game theory is an appropriate
tool to model electricity markets in an oligopoly compet-
itive environment.

In the electricity markets, in which the power transac-
tions are undertaken on a grid that needs to be operated
under strict physical and operational constraints; for this
reason very specific occasions of market power behaviors
related to system congestion may arise, giving a further
source of market inefficiency.

Game theory models suitable to represent the com-
petitive electricity market have been analyzed and tested
using the IEEE30 bus system. The simulations show a
worsening of the market performance, as measured by the
inefficiency index and the Lerner index, when compared to
the ideal model of perfect competition. Effects generated
by oligopoly competition are: loss in total social surplus,
increase of the producer surplus at the expenses of con-
sumer surplus, decrease in the quantity exchanged on the
market, higher market clearing price.

The loss of efficiency with respect to the perfect com-
petition may vary a lot from a model to another. This
shows that the type of competition in the market and/or
the hypothesis we do to model it may lead to very differ-
ent results. The monopoly model shows the worst behav-
ior, both under constrained and unconstrained network.
As for the oligopoly market, Counort model show a worse
performance than the SFE -intercept model, and as a fact
that, from the simulation results of other oligopoly mod-
els, Cournot model has the least competitive level both
under constrained and unconstrained network.

Due to the network constraints, the transmission net-
work plays a major role to determine the market equi-
librium. Under constrained network, the market clearing
price is higher and the power transacted is lower than
the corresponding values under unconstrained network.
As for the surpluses values, the network constraints pro-
vide some producers with additional opportunity to get
higher surplus with the decrement of the consumer sur-
plus, leading to the higher level of market inefficiency com-
pared with the unconstrained network. In this respect, to
strengthen the electricity transmission network will con-
tribute to mitigate the market power behaviors of the elec-
tricity producers.
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